219 research outputs found

    The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    Get PDF
    Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD

    Cryptococcus neoformans Requires a Functional Glycolytic Pathway for Disease but Not Persistence in the Host

    Get PDF
    Cryptococcus neoformans is an important fungal pathogen of immunocompromised individuals, with a close relative, Cryptococcus gattii, emerging as a serious threat for the immunocompetent. During initial infection, C. neoformans colonizes the airspaces of the lungs, resulting in pneumonia, and subsequently migrates to the central nervous system (CNS). We sought to understand fungal carbon utilization during colonization of these fundamentally different niches within the host, in particular the roles of gluconeogenesis and glycolysis. We created mutants at key points in the gluconeogenesis/glycolysis metabolic pathways that are restricted for growth on lactate and glucose, respectively. A phosphoenolpyruvate carboxykinase mutant (the pck1∆ mutant), blocked for entry of 2- and 3-carbon substrates into gluconeogenesis and attenuated for virulence in a murine inhalation model, showed wild-type (WT) persistence in a rabbit cerebrospinal fluid (CSF) model of cryptococcosis. Conversely, both the pyruvate kinase (pyk1∆) and the hexose kinase I and II (hxk1∆/hxk2∆) mutants, which show impaired glucose utilization, exhibited severely attenuated virulence in the murine inhalation model of cryptococcosis and decreased persistence in the CNS in both the rabbit CSF and the murine inhalation models while displaying adequate persistence in the lungs of mice. These data suggest that glucose utilization is critical for virulence of C. neoformans and persistence of the yeast in the CNS

    A Toxin-Antitoxin Module in Bacillus subtilis Can Both Mitigate and Amplify Effects of Lethal Stress

    Get PDF
    Bacterial type-2 (protein-protein) toxin-antitoxin (TA) modules are two-gene operons that are thought to participate in the response to stress. Previous work with Escherichia coli has led to a debate in which some investigators conclude that the modules protect from stress, while others argue that they amplify lethal stress and lead to programmed cell death. To avoid ambiguity arising from the presence of multiple TA modules in E. coli, the effect of the sole type-2 toxin-antitoxin module of Bacillus subtilis was examined for several types of lethal stress.Genetic knockout of the toxin gene, ndoA (ydcE), conferred protection to lethal stressors that included kanamycin, moxifloxacin, hydrogen peroxide, and UV irradiation. However, at low doses of UV irradiation the ndoA deficiency increased lethality. Indeed, gradually increasing UV dose with the ndoA mutant revealed a crossover response--from the mutant being more sensitive than wild-type cells to being less sensitive. For high temperature and nutrient starvation, the toxin deficiency rendered cells hypersensitive. The ndoA deficiency also reduced sporulation frequency, indicating a role for toxin-antitoxin modules in this developmental process. In the case of lethal antimicrobial treatment, deletion of the toxin eliminated a surge in hydrogen peroxide accumulation observed in wild-type cells.A single toxin-antitoxin module can mediate two opposing effects of stress, one that lowers lethality and another that raises it. Protective effects are thought to arise from toxin-mediated inhibition of translation based on published work. The enhanced, stress-mediated killing probably involves toxin-dependent accumulation of reactive oxygen species, since a deficiency in the NdoA toxin suppressed peroxide accumulation following antimicrobial treatment. The type and perhaps the level of stress appear to be important for determining whether this toxin will have a protective or detrimental effect

    Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne sarcoides

    Get PDF
    The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and biofuel production and provide the genomic foundation for the study of a model endophyte system

    Autophagy supports Candida glabrata survival during phagocytosis

    Get PDF
    The opportunistic human fungal pathogen Candida glabrata is confronted with phagocytic cells of the host defence system. Survival of internalized cells is thought to contribute to successful dissemination. We investigated the reaction of engulfed C. glabrata cells using fluorescent protein fusions of the transcription factors CgYap1 and CgMig1 and catalase CgCta1. The expression level and peroxisomal localization of catalase was used to monitor the metabolic and stress status of internalized C. glabrata cells. These reporters revealed that the phagocytosed C. glabrata cells were exposed to transient oxidative stress and starved for carbon source. Cells trapped within macrophages increased their peroxisome numbers indicating a metabolic switch. Prolonged phagocytosis caused a pexophagy-mediated decline in peroxisome numbers. Autophagy, and in particular pexophagy, contributed to survival of C. glabrata during engulfment. Mutants lacking CgATG11 or CgATG17, genes required for pexophagy and non-selective autophagy, respectively, displayed reduced survival rates. Furthermore, both CgAtg11 and CgAtg17 contribute to survival, since the double mutant was highly sensitive to engulfment. Inhibition of peroxisome formation by deletion of CgPEX3 partially restored viability of CgATG11 deletion mutants during engulfment. This suggests that peroxisome formation and maintenance might sequester resources required for optimal survival. Mobilization of intracellular resources via autophagy is an important virulence factor that supports the viability of C. glabrata in the phagosomal compartment of infected innate immune cells

    Simple rules can guide whether land or ocean based conservation will best benefit marine ecosystems

    Get PDF
    Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment run-off and a downstream coastal marine ecosystem, and contrast the cost-effectiveness of marine and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to one of four alternative conservation actions – protection on land, protection in the ocean, restoration on land, or restoration in the ocean – to maximise the extent of light-dependent marine benthic habitats, across decadal time-scales. We apply the model to a case study seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal time-scales in this system, based on a conservative estimate of the rate at which seagrass can expand into new habitat. The optimal decision will vary in different social-ecological contexts, but some basic information can guide optimal investments to counteract land and ocean based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high, or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is >1.4, with terrestrial restoration typically the most cost effective; and (4) land protection should be prioritised if the catchment is relatively intact, but the rate of vegetation decline is high. These rules-of-thumb illustrate how cost-effective conservation outcomes for connected land-ocean systems can proceed without complex modelling

    Synthetic biology approaches in drug discovery and pharmaceutical biotechnology

    Get PDF
    Synthetic biology is the attempt to apply the concepts of engineering to biological systems with the aim to create organisms with new emergent properties. These organisms might have desirable novel biosynthetic capabilities, act as biosensors or help us to understand the intricacies of living systems. This approach has the potential to assist the discovery and production of pharmaceutical compounds at various stages. New sources of bioactive compounds can be created in the form of genetically encoded small molecule libraries. The recombination of individual parts has been employed to design proteins that act as biosensors, which could be used to identify and quantify molecules of interest. New biosynthetic pathways may be designed by stitching together enzymes with desired activities, and genetic code expansion can be used to introduce new functionalities into peptides and proteins to increase their chemical scope and biological stability. This review aims to give an insight into recently developed individual components and modules that might serve as parts in a synthetic biology approach to pharmaceutical biotechnology

    Design Constraints on a Synthetic Metabolism

    Get PDF
    A metabolism is a complex network of chemical reactions that converts sources of energy and chemical elements into biomass and other molecules. To design a metabolism from scratch and to implement it in a synthetic genome is almost within technological reach. Ideally, a synthetic metabolism should be able to synthesize a desired spectrum of molecules at a high rate, from multiple different nutrients, while using few chemical reactions, and producing little or no waste. Not all of these properties are achievable simultaneously. We here use a recently developed technique to create random metabolic networks with pre-specified properties to quantify trade-offs between these and other properties. We find that for every additional molecule to be synthesized a network needs on average three additional reactions. For every additional carbon source to be utilized, it needs on average two additional reactions. Networks able to synthesize 20 biomass molecules from each of 20 alternative sole carbon sources need to have at least 260 reactions. This number increases to 518 reactions for networks that can synthesize more than 60 molecules from each of 80 carbon sources. The maximally achievable rate of biosynthesis decreases by approximately 5 percent for every additional molecule to be synthesized. Biochemically related molecules can be synthesized at higher rates, because their synthesis produces less waste. Overall, the variables we study can explain 87 percent of variation in network size and 84 percent of the variation in synthesis rate. The constraints we identify prescribe broad boundary conditions that can help to guide synthetic metabolism design
    corecore